\(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3=\left(x^3-6x^2y+9xy^2\right)+\left(y^3-6xy^2+9x^2y\right)\)
\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
b/
\(\left(a+b\right)^3+\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3\)
\(=2a^3+6ab^2=2a\left(a^2+3b^2\right)\)
c/
\(\left(a+b\right)^3-\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)
\(=6a^2b+2b^3=2b\left(b^2+3a^2\right)\)
d/
\(a^3+b^3=a^3+3a^2b+3ab^2+b^3-\left(3a^2b+3ab^2\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
e/
\(a^3-b^3=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)