a) Ta có:
\(\left(a+b\right)\left(a+c\right)+\left(c+a\right)\left(c+b\right)\)
\(=a^2+ac+ab+bc+c^2+bc+ac+ab\)
\(=a^2+c^2+2ac+2bc+2ab\)
Thay \(a^2+c^2=2b^2\) vào biểu thức ta được:
\(=2b^2+2ac+2bc+2ab\)
\(=2\left(b^2+ac+bc+ab\right)\)
\(=2\left[\left(b^2+bc\right)+\left(ac+ab\right)\right]\)
\(=2\left[b\left(b+c\right)+a\left(c+b\right)\right]\)
\(=2\left(b+a\right)\left(b+c\right)\)
\(\RightarrowĐpcm\)