a, Ta có:
\(VP=\left(a+b\right)^3-3ab\left(a+b\right)\\ =a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\\ =a^3+b^3=VT\)
Vậy..............(đpcm)
b, Ta có:
\(VT=a^3+b^3+c^3-3abc\\ =\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\\ =\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b\right)-3abc\\ =\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left[\left(a+b+c\right)^2-3c\left(a+b\right)-3ab\right]\\ =\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab\right)\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
Vậy..............(đpcm)