Ta có \(8^5+4^7-16^3\)
\(=\left(2^3\right)^5+\left(2^2\right)^7-\left(2^4\right)^3\)
\(=2^{15}+2^{14}-2^{12}\)
\(=2^8\left(2^7+2^6-2^4\right)\)
\(=256\left(2^7+2^6-2^4\right)⋮256\)
Vậy \(8^5+4^7-16^3⋮256\left(đpcm\right)\)
Chúc bn học tốt
Ta có \(8^5+4^7-16^3\)
\(=\left(2^3\right)^5+\left(2^2\right)^7-\left(2^4\right)^3\)
\(=2^{15}+2^{14}-2^{12}\)
\(=2^8\left(2^7+2^6-2^4\right)\)
\(=256\left(2^7+2^6-2^4\right)⋮256\)
Vậy \(8^5+4^7-16^3⋮256\left(đpcm\right)\)
Chúc bn học tốt
giúp mik vs nha cc bạn
Chứng minh rằng:
a) \(7^6+7^5-7^4\) chia hết cho 55
b) \(16^5+2^{15}\) chia hết cho 33
c) \(81^7-27^9-9^{13}\) chia hết cho 405
Chứng minh rằng:
\(5^5-5^4+5^3\) chia hết cho 7
chứng minh rằng \(7^6+7^5-7^4\) chia hết cho 55
chứng minh rằng \(7^6+7^5-7^4\) chia hết cho 55
Chứng minh rằng:
\(8^5+4^7-16^3⋮11\)
a)56.16 + 17.243 (mod 16)
b)67.32 + 34.944 (mod 31) c) 786.123 + 73.49 (mod 12) 2. Chứng minh rằng: 3 2n+1 + 5 chia hết cho 8 với mọi số tự nhiên n 3. Chứng minh rằng: n n−1 + n n−2 + n n−3 + ... + n 3 + n 2 + n chia hết cho n − 1 với mọi số tự nhiên n > 1 Giúp mình với ạ, cảm ơn!chứng minh rằng: 8 mũ 7 - 2 mũ 18 chia hết cho 14
Chứng minh rằng 87 - 218 chia hết cho 14
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng: