Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minamoto Shizuka

Chứng minh rằng

71 + 72 + 73+ 74 + ......... +74n-1 +74n chia hết cho 400

 

Lightning Farron
25 tháng 11 2016 lúc 17:06

\(7^1+7^2+...+7^{4n-1}+7^{4n}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(=7^1\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)

\(=7^1\cdot400+...+7^{4n-3}\cdot400\)

\(=400\left(7^1+...+7^{4n-3}\right)⋮400\)

Chibi dễ thương ^ _ ^
17 tháng 1 2017 lúc 21:06

71 + 72 + 73 + 74 + ... + 74n - 1 + 74n

= (71 + 72 + 73 + 74) + (75 + 76 + 77 + 78) + ... + (74n - 3 + 74n - 2 + 74n - 1 + 74n)

= 71 . (1 + 7 + 72 + 73) + 75 . (1 + 7 + 72 + 73) + ... + 74n - 3 . (1 + 7 + 72 + 73)

= 71 . 400 + 75 . 400 + ... + 74n - 3 . 400

= 400 . (71 + 75 + ... + 74n - 3)

Vì 400 \(⋮\)400 nên suy ra 400 . (71 + 75 + ... + 74n - 3) \(⋮\)400

Vậy ....

~.~