\(2014^{2015}-2013^{2014}=\left(2014^4\right)^{503}.2014^3-\left(2013^4\right)^{503}.2013^2=\left(....6\right)^{503}.\left(....4\right)-\left(....1\right)^{503}.\left(...9\right)=\left(.....6\right).\left(....4\right)-\left(.....1\right).\left(....9\right)=\left(.....4\right)-\left(.....9\right)=\left(.....5\right)⋮5\left(\text{đpcm}\right)\)