Bài 1:
a, \(A=x^2+10x+29=\left(x^2+10x+25\right)+4\)
\(=\left(x+5\right)^2+4\ge4>0\)
\(\Rightarrowđpcm\)
b, \(B=x^2+5x+7=x^2+\dfrac{5}{2}x.2+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrowđpcm\)
c, \(C=25x^2+20x+11=25x^2+20x+4+7\)
\(=\left(5x+2\right)^2+7\ge7>0\)
\(\Rightarrowđpcm\)
Bài 2:
a, \(M=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x^2-2x+1+1\right)\)
\(=\left(x-1\right)^2-1\le-1< 0\)
\(\Rightarrowđpcm\)
b, \(N=x-x^2-1=-\left(x^2-x+1\right)\)
\(=-\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le\dfrac{-3}{4}< 0\)
\(\Rightarrowđpcm\)
1/
a, A = \(x^2+10x+29\)
=> A = \(x^2+10x+25+4\)
=> A = \(\left(x+5\right)^2+4\)
Ta thấy:
\(\left(x+5\right)^2\ge0\) với mọi x
=> \(\left(x+5\right)^2+4\ge4>0\)
=> \(\left(x+5\right)^2+4>0\)
hay \(A>0\)
Vậy biểu thức A luôn dương với mọi giá trị của x
b,B = \(x^2+5x+7\)
=> B = \(x^2+5x+\dfrac{25}{4}+\dfrac{3}{4}\)
=> B = \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
Ta thấy:
\(\left(x+\dfrac{5}{2}\right)^2\ge0\) với mọi x
=> \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
=> \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}>0\)
hay \(B>0\)
Vậy biểu thức B luôn dương với mọi giá trị của x
c,\(C=25x^2+20x+11\) => \(C=25x^2+20x+4+7\)=> C = \(\left(5x+2\right)^2+7\)
Ta thấy:
\(\left(5x+2\right)^2\ge0\) với mọi x
=> \(\left(5x+2\right)^2+7\ge7>0\)
=> \(\left(5x+2\right)^2+7>0\)
hay \(C>0\)
Vậy biểu thức C luôn dương với mọi giá trị của x
\(A=x^2+10x+29\)
\(=x^2+2.x.5+5^2+4\)
\(=\left(x+5\right)^2+4\)
Ta có: \(\left(x+5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+5\right)^2+4\ge4>0\)
\(\Rightarrow\left(x+5\right)^2+4>0\)
Vậy A>0