Bài 3: Hàm số liên tục

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Nguyên Hưng

chưng minh pt \(x^3+x-1=0\) có đúng 1 nghiệm dương

 

Akai Haruma
5 tháng 3 2021 lúc 23:38

Lời giải:

Đặt $f(x)=x^3+x-1$

$f'(x)=3x^2+1>0$ với mọi $x\mathbb{R}$ nên hàm $f(x)$ đồng biến trên $\mathbb{R}$

Do đó pt $f(x)=0$ có duy nhất 1 nghiệm (1)

Mặt khác, dễ thấy hàm $f(x)$ liên tục trên $\mathbb{R}$

$f(0)=-1$; $f(1)=1$ nên $f(0).f(1)<0$

$\Rightarrow f(x)=0$ có ít nhất 1 nghiệm thuộc $(0;1)$ (2)Từ $(1);(2)$ suy ra $f(x)=0$ có nghiệm dương duy nhất.


Các câu hỏi tương tự
xin gam
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thanh Hậu
Xem chi tiết
Xeton
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết