\(x\left(3x+12\right)-\left(7x-20\right)-x^2\left(2x+3\right)+x\left(2x^2-5\right)\\ =3x^2+12x-7x+20-2x^3-3x^2+2x^3-5x\\ =20\)
Ta có biểu thức trên:
\(=3x^2+12x-7x+20-2x^3-3x^2+2x^3-5x\)
\(=\left(2x^3-2x^3\right)+\left(3x^2-3x^2\right)+\left(12x-7x-5x\right)+20\)
\(=0+0+0+20=20\)
Vậy giá trị biểu thức trên luôn bằng 20 với mọi x, y, cũng có nghĩa là giá trị biểu thức trên không phụ thuộc vào biến x, y (đfcm)