Cho a thỏa mãn \(cos4a=\dfrac{1}{4}\)
Tính \(sin^4a+cos^4a\) và \(sin^6a+cos^6a\)
Gấp, mọi người giúp mình với, mình cần cách giải của 4 bài này ạ!!!
1, Với mọi \(\alpha\), biểu thức : A= Cos \(\alpha\) + Cos \(\left(\alpha+\dfrac{\pi}{5}\right)+...+Cos\left(\alpha+\dfrac{9\pi}{5}\right)\) nhận gí trị bằng?
2, Nếu \(Sin\alpha+Cos\alpha=\dfrac{1}{2}\) thì \(3Sin\alpha+2Cos\alpha\) bằng?
3, Biểu thức C= \(2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\) có giá trị không đổi bằng?
4, Biết tan x =\(\dfrac{2b}{a-c}\) . Gía trị của biểu thức A= \(acos^2x+2bsinx.cosx+csin^2x\) bằng?
Bài 1 cho \(tanx=\frac{3}{5}\) . Tính giá trị biểu thức sau :
N = \(\frac{3sin^2x+12sinx.cosx+cos^2x}{sin^2x+sinx.cosx-2cos^2x}\)
Chứng minh đẳng thức :
\(\frac{sin^23a}{sin^2a}-\frac{cos^23a}{cos^2a}=8cos2a\)
tính giá trị của biểu thức:
B= \(\frac{\sin a+\cos a}{\cos a-sina}\) biết \(\tan a=-2\)
C= \(\sin^2a-\sin a.\cos a+\cos^2a\) biết \(\tan a=\frac{1}{2}\)
F= \(\frac{8\cos^3a-2\sin^3a+\cos a}{2\cos a-\sin^3a}\) biết \(\tan a=2\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Không dùng máy tính rút gọn biểu thức và tính giá trị
\(H=cot15^o.cot35^o.cot55^o.cot75^o\\ I=tan10^o.tan20^o.tan30^o....tan80^o\\ K=sin^228^o+sin^236^o+sin^254^o+cos^2152^o\)
Cho \(sinx+cosx=m\) Tính theo m giá trị biểu thức
\(a,A=sinx.cosx\\ b,B=\left|sinx-cosx\right|\\ c,C=sin^4x+cos^4x\\ d,D=tan^2x+cot^2x\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)