Ta có:\(\dfrac{2!}{3!}\)+\(\dfrac{2!}{4!}\)+\(\dfrac{2!}{5!}\)+...+\(\dfrac{2!}{n!}\)
=\(\dfrac{1.2}{1.2.3}\)+\(\dfrac{1.2}{1.2.3.4}\)+...+\(\dfrac{1.2}{1.2.3...n}\)
=\(\dfrac{1}{3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{3.4.5...n}\)
<\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{\left(n-1\right)n}\)=1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-...+\(\dfrac{1}{n-1}\)+\(\dfrac{1}{n}\)=1-\(\dfrac{1}{n}\)<1
Ta có: 2!/3! < 1 ; 2!/4! < 1 ;2!/4! < 1 ; ... ; 2!n! <1
Vì n lớn hơn hoặc bằng 3 nên 2!/n! <1 (đpcm)