Sửa đề: Chứng minh \(\left(\sqrt{7+4\sqrt{3}}+\sqrt{8-2\sqrt{15}}\right)-\left(\sqrt{8+2\sqrt{15}}-\sqrt{7-4\sqrt{3}}\right)=\left(\sqrt{3}-1\right)^2\)
Ta có: \(VT=\left(\sqrt{7+4\sqrt{3}}+\sqrt{8-2\sqrt{15}}\right)-\left(\sqrt{8+2\sqrt{15}}-\sqrt{7-4\sqrt{3}}\right)\)
\(=\left(\sqrt{4+2\cdot2\cdot\sqrt{3}+3}+\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\right)-\left(\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\right)\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2+\sqrt{3}\right|+\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)
\(=\left(2+\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\)
\(=2+\sqrt{3}+\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}+2-\sqrt{3}\)
\(=4-2\sqrt{3}\)
\(=3-2\cdot\sqrt{3}\cdot1+1\)
\(=\left(\sqrt{3}-1\right)^2=VP\)(đpcm)