Cho a,b,c>0 . Chứng minh \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)≥\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)
cho a,b,c>0
chứng minh \(\sqrt{a^2+b^2-\sqrt{3}ab}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2}\)
Cho a,b,c Là 3 cạnh tam giác . Chứng minh rằng
\(\dfrac{1}{\sqrt{ab+bc}}+\dfrac{1}{\sqrt{bc+ca}}+\dfrac{1}{\sqrt{ca+ab}}\ge\dfrac{1}{\sqrt{a^2+bc}}+\dfrac{1}{\sqrt{b^2+ac}}+\dfrac{1}{\sqrt{c^2+ab}}\)
Cho \(a\ge b>0\) và \(c\ge\sqrt{ab}\).
Chứng minh: \(\dfrac{a+c}{\sqrt{a^2+c^2}}\ge\dfrac{b+c}{\sqrt{b^2+c^2}}\)
chứng minh bất đẳng thức : \(\frac{a+b}{2}\ge\sqrt{ab}\) với a,b \(\ge\) 0
áp dụng chứng minh : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
hãy mở rọng kết quả cho nhiều số không âm
Cho a, b, c>0 và a+b+c\(\ge3\)
Cmr:
\(\dfrac{a^2}{a+\sqrt{bc}}+\dfrac{b^2}{b+\sqrt{ac}}+\dfrac{c^2}{c+\sqrt{ab}}\ge\dfrac{3}{2}\)
Cho a,b,c>0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). Chứng minh
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}\)
Cho a,b,c là 3 số thực không âm sao cho không 2 số nào cùng bằng 0 đồng thời
. Chứng minh rằng
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+3\sqrt{3}.\sqrt{\frac{ab+bc+ac}{a^2+b^2+c^2}}\ge\frac{7\sqrt{2}}{2}\)
aChứng minh bất phương trình : \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) . Dấu = xảy ra khi a=0 hoặc b=0
b, Áp dụng giải bất phương trình \(2012\sqrt{x-99}+2013\sqrt{105-x}\le2012\sqrt{6}\)