Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Như

Chứng minh các hằng đẳng thức sau:

a) \(\left(ax+yy+cz\right)^2+\left(bx-ay\right)^2+\left(cy-bz\right)^2+\left(az-cx\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

b) \(\left(ab+bc+ac\right)^2+\left(a^2-bc\right)+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2=\left(a^2+b^2+c^2\right)^2\)

Mathematics
24 tháng 7 2017 lúc 21:49

a) Sửa đề: \(\left(ax+by+cx\right)^2+\left(bx-ay\right)^2+\left(cy-bz\right)^2+\left(az-cx\right)^2\)
= a2x2 + b2y2 + c2x2 + 2axby + 2bycz + 2axcz + b2x2 - 2bxay + a2y2 + c2y2 - 2cybz + b2z2 + a2z2 - 2azcx + c2x2
= a2x2 + b2y2 + c2x2 + b2x2 + a2y2 + c2y2 + b2z2 + a2z2 + c2x2
= a2(x2+y2+z2) + b2(x2+y2+z2) + c2(x2+y2+z2)
= (a2+b2+c2)(x2+y2+z2) (đpcm)

b) Đặt x = b; y = c; z = a, ta có:
\(\left(ay+bz+cx\right)^2+\left(az-by\right)^2+\left(bx-cz\right)^2+\left(cy-ax\right)^2\)
= a2y2 + b2z2 + c2x2 + 2aybz + 2bzcx + 2aycx + a2z2 - 2azby + b2y2 + b2x2 - 2bxcz + c2z2 + c2y2 - 2cyax + a2x2
= a2y2 + b2z2 + c2x2 + a2z2 + b2y2 + b2x2 + c2z2 + c2y2 + a2x2
= (a2+b2+c2)(x2+y2+z2)
Thay b = x, c = y, a = z, ta có:
(a2+b2+c2)(x2+y2+z2) = (a2+b2+c2)2 (đpcm)


Các câu hỏi tương tự
Thiên sứ của tình yêu
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Linh Pea
Xem chi tiết
Kotori Minami
Xem chi tiết
Thương Thương
Xem chi tiết
Việt Lê
Xem chi tiết
tiêu mỹ ly
Xem chi tiết
amime Nguyễn
Xem chi tiết
__HeNry__
Xem chi tiết