\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\Leftrightarrow a+2\sqrt{ab}+b\ge a+b\left(vì:\sqrt{a}+\sqrt{b};\sqrt{a+b}\ge0\right)\Leftrightarrow2\sqrt{ab}\ge0\left(luondung\right)\)
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\Leftrightarrow a+2\sqrt{ab}+b\ge a+b\left(vì:\sqrt{a}+\sqrt{b};\sqrt{a+b}\ge0\right)\Leftrightarrow2\sqrt{ab}\ge0\left(luondung\right)\)
Cho a, b, c là các số dương thoả mãn: a+b+c=1. Chứng minh bất đẳng thức: \(\sqrt{ab+c}\) + \(\sqrt{bc+a}\) + \(\sqrt{ca+b}\) ≤ 2
B1, cho a, b không âm. chứng minh
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)(bất đẳng thức Cô-si cho hai số không âm).
Dấu bằng xảy rakhi nào?
B2, với a\(\ge\)0 và b\(\ge\)0. chứng minh
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
chứng minh hằng đẳng thức sau với b\(\ge0\), a\(\ge\sqrt{b}\) :
\(\sqrt{a\pm\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}\)
Chứng minh bất đẳng thức cô-si với 3 số a,b,c không âm: \(\dfrac{a+b+c}{3}\ge\sqrt[3]{abc}\). Dấu đẳng thức xảy ra khi a=b=c.
Áp dụng chứng minh bất đẳng thức: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Cho các số dương a,b,c thỏa mãn ab+bc+ca=1
Chứng minh bất đẳng thức \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le2\left(a+b+c\right)\)
Chứng minh đẳng thức:
\(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\)
Chứng minh đẳng thức :
\(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\) =\((\sqrt{a}-\sqrt{b})^2\)
Chứng minh đẳng thức sau:
\(\frac{2}{\sqrt{ab}}\div\left(\frac{1}{a}-\frac{1}{b}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)
Chứng minh bất đẳng thức: \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\) với x,y \(\ge\) 1