Chứng minh các bất đẳng thức sau:
a) \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
b) \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
c) \(a^2+2b^2+c^2\ge2ab-2bc\)
d) \(x^2+y^2+z^2+\dfrac{3}{4}\ge x+y+z\)
e) \(a^2+b^2\ge\left(a+b\right)^2\ge4ab\)
f) \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)