Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiền Hương

chứng minh bđt sau với a,b,c dương

\(\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{8}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nguyễn Việt Lâm
5 tháng 10 2019 lúc 17:37

Ta có: \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2\left(b+c\right)+ab\left(b+c\right)+bc\left(b+c\right)+ac\left(b+c\right)+abc\)

\(=\left(b+c\right)\left(a^2+ab+bc+ac\right)+abc\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

Vậy BĐT cần chứng minh trở thành:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{8}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\frac{1}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le0\) \(?!\)

Bất đẳng thức sai

Thử lại với \(a=b=c=1\) thì \(9\le\frac{64}{9}\) sai thật

BĐT đúng có lẽ là:

\(\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Khi đó:

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (đúng theo AM-GM)

Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c\)

tthnew
6 tháng 10 2019 lúc 7:39

Sửa đề: \(\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)


Các câu hỏi tương tự
Nguyễn Xuân Đình Lực
Xem chi tiết
Nano Thịnh
Xem chi tiết
Doãn Hoài Trang
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Phuc Trung
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Hiền Hương
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Minh Nguyệt
Xem chi tiết