\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) là bất đẳng thức đúng.
Vậy ta có đpcm. Dấu "=" khi \(x=y\)
\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) là bất đẳng thức đúng.
Vậy ta có đpcm. Dấu "=" khi \(x=y\)
Chứng minh các bất đẳng thức sau với x, y, z > 0
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) x2 + y2 ≥ (x + y)2/2
b) x3 + y3 ≥ (x + y)3/4
c) x4 + y4 ≥ (x + y)4/8
d) x2 + y2 + z2 ≥ xy + yz + zx
e) x2 + y2 + z2 ≥ (x + y + z)2/3
f) x3 + y3 + z3 ≥ 3xyz
Chứng minh bất đẳng thức : \(x^2+y^2-xy\) lớn hơn hoặc bằng \(x+y-1\)
Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
Chứng minh bất đẳng thức x⁴+16>=2x³+8x
Giải bất đẳng thức sau
x2+y2 ≥ \(\dfrac{\left(x+y\right)^2}{2}\)≥2xy
chứng minh
x2 -2xy + y2 + 1 = 0 vs mọi x,y thuộc R
x - x2 -1 < 0 vs mọi x thuộc R
HELP ME MAI CÓ TIẾT RỒI
Chứng minh bất đẳng thức
x^4 + x^3 + x + 1
A = _______________ > hoặc = 0
x^4 - x^3 + 2x^2 - x + 1