Đây á
\(\left(a+b\right)^3=\left(a+b\right)^2.\left(a+b\right)=\left(a^2+2ab+b^2\right)\left(a+b\right)\)=\(a^3+3a^2b+3ab^2+b^3\)(đpcm)
Tất nhiên là SOS giải được, ye ye!
\(\sum a(a-b)(a-c) = \frac{3abc \sum (a-b)^2 + (a+b+c) \sum (a+b-c)^2 (a-b)^2}{2(a^2+b^2+c^2+ab+bc+ca)} \geqq 0\)