\(A=x-1-2x^2+2x-5=-2x^2+3x-6\)
\(=-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}+3\right)\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}\le-\frac{39}{8}< 0^{\left(đpcm\right)}\)
Vậy..
\(A=x-1-2x^2+2x-5=-2x^2+3x-6\)
\(=-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}+3\right)\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}\le-\frac{39}{8}< 0^{\left(đpcm\right)}\)
Vậy..
Chứng minh biểu thức sau không phụ thuộc vào biến:
\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3x^2-3x\)
Thực hiện phép tính
a,\(\left(x-y\right)\left(y^2+y+1\right)+\left(\dfrac{1}{3}x^2y-y\right)\left(2x+y^2\right)\)
b,\(2x^2\left(x-2\right)+3x\left(x^2-x-2\right)-5\left(3-x^2\right)\)
c,\(\left(x-1\right)\left(x-3\right)-\left(4-x\right)\left(2x-1\right)-3x^3+2x-5\)
CM các biểu thức sau không phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\times\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
Tìm x
a,\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-1\right)\left(x+1\right)+3x=2\)
b,\(2x^3-50x=0\)
c,\(5x^2-4\left(x^2-2x+1\right)-5=0\)
Làm tính chia :
a) \(\left(2x^3+5x^2-2x+3\right):\left(2x^2-x+1\right)\)
b) \(\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
c) \(\left(x^4-x-14\right):\left(x-2\right)\)
Rút gọn các biểu thức sau :
a) \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
b) \(\left(2x+1\right)^2+\left(3x-1\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
Làm tính chia :
a) \(\left(2x^5-5x^3+x^2+3x-1\right):\left(x^2-1\right)\)
b) \(\left(5x^5-2x^4-9x^3+7x^2-18x-3\right):\left(x^2-3\right)\)
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
Cho đa thức \(P\left(x\right)\) có bậc 8 thỏa mãn \(P\left(1\right)=P\left(-1\right)\) ; \(P\left(2\right)=P\left(-2\right)\);\(P\left(3\right)=P\left(-3\right)\) và \(P\left(4\right)=P\left(-4\right)\). Chứng minh rằng \(P\left(x\right)=P\left(-x\right)\) với mọi \(x\).