\(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)
\(=9=VP\)
\(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)
\(=9=VP\)
Chứng minh :
a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
b) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
Bài 1 : Rút gọn
a) \(\frac{\sqrt{6}+\sqrt{16}}{2\sqrt{3}+\sqrt{28}}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3+\sqrt{4}}}\)
Bài 2: Chứng minh
a)\(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}=8\)
b)\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
Tính
1) \(\sqrt{18}.\sqrt{2}\)
2) \(\sqrt{15^2-9^2}\)
3) \(\sqrt{46-6\sqrt{5}}-\sqrt{46+6\sqrt{5}}\)
4)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
5) \(\left(2+\sqrt{5}\right).\sqrt{9-4\sqrt{5}}\)
6)\(\left(3-\sqrt{2}\right).\sqrt{7+4\sqrt{3}}\)
7)\(\left(\sqrt{3}+\sqrt{5}\right).\sqrt{7-2\sqrt{10}}\)
8)\(\left(\sqrt{6}+\sqrt{10}\right).\sqrt{4-\sqrt{15}}\)
9) \(\sqrt{2}.\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
10) \(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
11) \(\sqrt{3}-\sqrt{2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
12) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right).\sqrt{2}+2\sqrt{5}\)
A)\(\left(3-2\sqrt{2}\right).\left(3+2\sqrt{2}\right)\) B) \(\sqrt{\left(\sqrt{3}-2\right)}^2-\sqrt{\left(\sqrt{3}+2\right)}^2\) C)\(\sqrt{3-2\sqrt[]{2}}-\sqrt{3+2\sqrt{2}}\)
D)\(\left(1+\sqrt{3}-\sqrt{2}\right).\left(1+\sqrt{3}+2\right)\)
E) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) F)\(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
H)\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Thực hiện phép tính:
a) ( \(4+\sqrt{15}\))\(\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b)\(\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
c) \(\left(\sqrt{3}-\sqrt{2}+1\right)\left(\sqrt{3}-1\right)\)
d) \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Rút gọn
\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{18}}\)
\(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right).\left(15+2\sqrt{6}\right)\)
Tính :
a) \(\sqrt{3\sqrt{2}+2\sqrt{3}}.\sqrt{3\sqrt{2}-2\sqrt{3}}\)
b) \(\left(1-\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
c) \(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)
Rút gọn biểu thức
a. \(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}+\sqrt{7}\right)\)
b.\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)\)
c. \(\sqrt{9+4\sqrt{5}}\)
d. \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}\)
e. \(\sqrt{55-6\sqrt{6}}\)
f. \(\sqrt{21-6\sqrt{6}}\)