a)
\(M=\sqrt{3\sqrt{2}+2\sqrt{3}}\times\sqrt{3\sqrt{2}-2\sqrt{3}}\)
\(M^2=\sqrt{2\times3}\left(\sqrt{3}+\sqrt{2}\right)\times\sqrt{2\times3}\left(\sqrt{3}-\sqrt{2}\right)\)
\(=6\)
\(\Rightarrow M=\sqrt{6}\)
b)
\(\left(1-\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
\(=1-\left(\sqrt{3}-\sqrt{2}\right)^2\)
\(=1-3+2\sqrt{6}-2=-4+2\sqrt{6}\)
c)
\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)
\(=\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)
\(=25-32=-7\)