Cho tam giác ABC có trung tuyến AD, trọng tâm G, I là trung điểm AG, K thuộc đoạn AB. AK=1/5 AB, phân tích các vecto sau qua vecto CA, vecto CB a. Vecto AI b. Vecto AK c. Vecto CI d. Vecto CK
cho hình bình hành ABCD gọi I là trung điểm của CD . G là trong tâm cũa tam giác BCI hãy phân tích vecto BI và AB và AD
Cho tam giác ABC , M là điểm trên cạnh BC sao cho 7MB = BC , N là trung điểm của cạnh AB . Đặt u → =BA → , v→ = BC →
a, phân tích vecto CN → theo 2 vecto u → và v →
b, phân tích vecto AM → theo 2 vecto u → và v →
Cho tam giác ABC. Gọi M là trung điểm AB và N là điểm trên cạnh AC sao cho NC = 2NA.
a) Phân tích vecto \(\overrightarrow{MN}\)theo hai vecto \(\overrightarrow{AB},\overrightarrow{AC}\)
b) Gọi I là trung điểm MN, J là điểm trên cạnh BC sao cho \(\overrightarrow{BI}=x\overrightarrow{BC}\) . Tìm x để ba điểm A, I, J thẳng hàng
cho hình vuông abcd tâm o.liệt kê tất cả các vecto bằng nhau(khác vecto 0) nhận định và tâm của hình vuông làm điểm đầu và điểm cuối
Cho hai vecto \(\overrightarrow{a}\) = ( -3 ; 2 ) và \(\overrightarrow{b}\) = ( 4 ; 5 )
a) Hãy biểu thị các vecto \(\overrightarrow{a}\) và \(\overrightarrow{b}\) theo hai vecto \(\overrightarrow{i}\) và\(\overrightarrow{j}\)
b) Tìm tọa độ của các vecto \(\overrightarrow{c}\) = \(\overrightarrow{a}\) - \(\overrightarrow{b}\) ,
\(\overrightarrow{d}\) = 2\(\overrightarrow{a}\)+ \(\dfrac{1}{2}\)\(\overrightarrow{b}\)
1. Cho hbh ABCD và một điểm M tuỳ ý. Cmr: vecto MA + MC= MB+MD
2. Cho tam giác ABC bên ngoài tam giác vẽ hbh ABIJ BCPQ CARS. Cmr: vecto RJ + IQ + PD= vecto 0
3. Cho 3 điểm O A B ko thẳng hàng. Với điều kiện nào vecto OA + OB nằm trên đường phân giác của góc AOB
Cho hình chữ nhật ABCD có cạnh AD=2AB=10cm . Tính độ dài vecto AD+ vecto BD
cho tam giác ABC. gọi M là trung điểm BC, N là trung điểm BM
Hãy phân tích vecto\(\overrightarrow{AN}\) theo \(\overrightarrow{AB}và\overrightarrow{AC}\)