bài 1: tính A:=\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{2}{3}-\frac{1}{2}\)
Bài 2: Cho B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
Bài 1: Chứng minh \(n^2+n+2\) không chia hết cho 15 với mọi n \(\in\) Z.
Bài 2: Chứng minh \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) \(\in\) Z, \(\forall a\in Z\)
Bài 1) Cho \(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\) và \(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\). Tìm x\(\in\)Z để A<x<B
Bài 1: Cho \(\frac{x+y-3}{z}=\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{1}{x+y+z}\). Tìm x;y;z.
Bài 2: Cho \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\). Tìm x.
Bài 3: Cho \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\). Chứng minh rằng \(\left[{}\begin{matrix}a=c\\a+b+c+d=0\end{matrix}\right.\).
Bài 4: Tìm \(a_1;a_2;a_3;...;a_{100}\)biết:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}\)và \(a_1+a_2+a_3+...+a_{100}=10100\).
Bài 5: Tìm x biết:
a) \(\left[\frac{3x+1}{5}\right]=1\)
b) \(\left[\frac{7x-5}{3}\right]=-2\)
Bài 6: Tìm \(\left[x\right]\) biết:
a) \(3< x< \frac{17}{5}\)
b) \(\frac{-9}{2}< x< -4\)
c) \(\frac{-11}{3}< x< \frac{10}{-3}\)
cho A= \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\) chứng minh A>50
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho: \(A=\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+..............+\frac{2016}{4030}-2016\)
và \(B=\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+.............+\frac{1}{4030}\)
Chứng minh rằng: \(\frac{A}{B}\) là một số nguyên
Cho \(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)
Chứng minh rằng:
a) \(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
b) \(\frac{7}{12}< A< \frac{5}{6}\)