Cho tam giác ABC cân tại A. Điểm M thuộc tia đối của tia BC. Chứng minh rằng hiệu các khoảng cách từ điểm M đến các đường thẳng AC và AB bằng chiều cao tương ứng với cạnh bên của tam giác ABC.
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi I là trung điểm của AB và D là điểm đối xứng của M qua I. a) Chứng minh rằng tứ giác ADBM là hình thoi. b) Gọi E là giao điểm của AM và AD. Chứng minh AE = EM
Cho tam giác ABC vuông tại A, biết AB=21 cm, AC=28 cm, phân giác AD ( D thuộc BC).
a)Tính độ dài DB, DC.
b) Gọi E là hình chiếu của D trên AC. Hãy tính độ dài DE, EC.
c) chứng minh tam giác ABC đồng dạng với tam giác EDC và tỉ số đồng dạng
GIẢI CHI TIẾT GIÚP MÌNH VỚI NHÉ
Cho tam giác đều ABC cạnh a và điểm M bất kì nằm trong tam giá đó. gọi H, K,T tương ứng là hình chiếu vuông góc của điểm M trên BC, CA,AB. Chứng minh rằng MH + Mk + Mt = \(\dfrac{a\sqrt{3}}{2}\)
Cho tam giác đều ABC cạnh a và điểm M bất kì nằm trong tam giá đó. gọi H, K,T tương ứng là hình chiếu vuông góc của điểm M trên BC, CA,AB. Chứng minh rằng MH + Mk + Mt = \(\dfrac{a\sqrt{3}}{2}\)
Cho tam giác đều ABC cạnh a và điểm M bất kì trong tam giác đó.gọi H,K,T ương ứng là hình chiếu vuông góc của điểm M trên BC,CA,AB.chứng minh rằng MH+MK+MT = \(\dfrac{a\sqrt{3}}{2}\).
Cho tam giác đều ABC và điểm M bất kì nằm trong tam giác đó. Đường thẳng đi qua điểm M và vuông góc với BC tại điểm H. Đường thẳng đi qua điểm M và vuông góc với CA tại điểm K. Đường thẳng đi qua điểm M và vuông góc với AB tại điểm T
Chứng minh rằng MH + MK + MT không phụ thuộc vào vị trí của điểm M
a) Cho hai tam giác ABC và DBC. Kẻ đường cao AH của tam giác ABC. Kẻ đường cao DK của tam giác DBC. Gọi S là diện tích của tam giác ABC. Gọi S' là diện tích của tam giác DBC
Chứng minh rằng : \(\dfrac{S'}{S}=\dfrac{DK}{AH}\)
b) Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Kẻ các đường cao của tam giác đó là AD, BE và CF. Đường thẳng đi qua điểm M và song song với AD cắt cạnh BC tại điểm H. Đường thẳng đi qua điểm M và song song với BE cắt cạnh AC tại điểm K. Đường thẳng đi qua điểm M và song song với CF cắt cạnh BA tại điểm T
Chứng minh rằng \(\dfrac{MH}{AD}+\dfrac{MK}{BE}+\dfrac{MT}{CF}=\)
Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Kẻ các đường cao của tam giác đó là AD,BE,CF. Đường thẳng đi qua M và song song với AD cắt BC tại H. Đường đi qua M và song song với BE cắt AC tại điểm K. Đường thẳng đi qua điểm M và song song với CF cat BA tại T
CMR \(\dfrac{MH}{AD}+\dfrac{MK}{BE}+\dfrac{MT}{CF}=1\)