1.tìm m để hs y=\(\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
2. có bn số nguyên m để hs y=\(x^3+mx-\dfrac{1}{5x^2}\) đồng biến trên \(\left(0;+\infty\right)\)
3. có bn số nguyên m để hs y=\(\dfrac{mx-4}{x-m}\) tăng trên \(\left(0;+\infty\right)\)
Tìm m để hàm số :
a) \(y=x^4+\left(m^2-4\right)x^2+5\) có 3 cực trị
b) \(y=\left(m-1\right)x^4-mx^2+3\) có đúng một cực trị
Cho hs y= x^3-mx^2 +3(m-1)x+1 Tìm m để: a, Hs có cực đại cực tiểu |Xcd-Xct|=2 b, hs đạt cực đại tại x=2 c, hs đồng biến tren R d, hs đồng biến tren(1;dương vô cùng) e, hs nghịch biến trên đoạn có độ dài trên trục bằng 2
cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Xét hàm số g(x)=f(x^3+2x-1)+4m. Tìm m để ming(x)=5
Tìm m để hàm số :
\(y=\dfrac{1}{3}mx^3+mx^2+2\left(m-1\right)x-2\)
không có cực trị
Tìm m để hàm số :
a) \(y=x^3+\left(m+3\right)x^2+mx-2\) đạt cực tiểu tại \(x=1\)
b) \(y=-\dfrac{1}{3}\left(m^2+6m\right)x^3-2mx^2+3x+1\) đạt cực đại \(x=-1\)
tìm m để pt có 3 nghiệm pb : \(4x^3-6x^2+m=0\)
tìm m ? thì y=\(\dfrac{x-3}{x+1}\) cắt y=x+m tại 2 điểm phân biệt
m? thì y=\(\dfrac{x+1}{x-1}\), y=-2x+m cắt tại 2 điểm phân biệt
1. có bn số nguyên m để y=\(\dfrac{mx+3}{3x+m}\) giảm trên \(\left(0;+\infty\right)\)
2. tìm m đẻ hs y=\(-x^3-6x^2+\left(4m-9\right)x+4\) giảm trên \(\left(-\infty;-1\right)\)
3. tìm m để y=\(x^3-mx^2+x+1\) tăng trên \(\left(0;+\infty\right)\)
Chứng minh rằng hàm số
\(y=x^3-3\left(m-1\right)x^2-3\left(m+3\right)x-5\)
luôn có cực trị với mọi giá trị của \(m\in\mathbb{R}\)