Cho hàm số f(x) = \(\dfrac{x+m}{x+1}\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của tham số m sao cho \(max_{[0;1]}\left|f\left(x\right)\right|\) + \(min_{[0;1]}\left|f\left(x\right)\right|\) =2. Số phần tử của S là?
Cho hàm số f(x)=\(\dfrac{x+m}{x+1}\)( m là tham số thực) gọi S là tập hợp tất cả các giá trị của m sao cho \(\min\limits_{\left[0;1\right]}\left|f\left(x\right)\right|+\max\limits_{\left[0;1\right]}\left|f\left(x\right)\right|=2\). Số phần tử của A là
A.6
B.2
C.1
D.4
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho GTNN của hàm số f(x) = \(\left(\frac{34}{{\underbrace{\sqrt{(x^2-3x+2m)^2}+1}}}\right)\)trên đoạn [0;3] bằng 2. Tổng tất cả các phần tử của S bằng ?
A. 8 B. -8 C. -6 D. -1
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho \(max_{\left[-2;1\right]}\left(x^4-6mx^2+m^2\right)=16\) . Số phần tử của S là?
cho hàm số y=\(\dfrac{x^2-m^2x+1}{x-1}\).Gọi S là tập hợp tất cả giá trị thực của tham số m để max=14/3
Cho hàm số f(x)=\(\left|x^4-4x^3+4x^2+a\right|\). Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên đoạn [0;2]. Có bao nhiêu số nguyên a thuộc đoạn [-3;3] sao cho M≤2m
A.3
B.7
C.6
D.5
Tìm tất cả các giá trị của m>1 để giá trị lớn nhất của hàm số f(x)=(2.cănx +m)/(căn(x+1)) trên đoạn [0,4] không lớn hơn 3
Có bao nhiêu giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm f(x)= \(\left|-x^3+2x^2-2x+m+2\right|\) trên đoạn [0;2] không vượt quá 10?
A.25 B.17 C.26 D.18
Gọi S là tập tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số \(y=\left|\frac{1}{4}x^4-14x^2+48x+m-30\right|\) trên đoạn \(\left[0;2\right]\) không vượt quá 30. Tổng tất cả các giá trị của S là: