ta có y'=\(-e^{-x}.\sin+e^{-x}.cosx\)
y"=\(e^{-x}.sinx-e^{-x}.cosx-e^{-x}.cosx-e^{-x}.sinx=-2e^{-x.cosx}\)
vậy y"+2y'+2y=\(-2e^{-x}.cosx-2e^{-x}.sinx+2e^{-x}.cosx+2e^{-x}.sinx=0\)
ta có y'=\(-e^{-x}.\sin+e^{-x}.cosx\)
y"=\(e^{-x}.sinx-e^{-x}.cosx-e^{-x}.cosx-e^{-x}.sinx=-2e^{-x.cosx}\)
vậy y"+2y'+2y=\(-2e^{-x}.cosx-2e^{-x}.sinx+2e^{-x}.cosx+2e^{-x}.sinx=0\)
Cho \(y=a.e^{-x}+b.e^{-2x}\) (a, b là hằng số)
Chứng minh hệ thức \(y''+3y'+2y=0\)
cho y=\(e^{sinx}\). Chứng minh hệ thức y'cosx-ysinx-y"=0
Cho \(y=e^{2x}\sin5x.\). Chứng minh hệ thức \(y"-4y'+29y=0\)
Cho \(y=\frac{1}{1+x+\ln x}\), chứng minh hệ thức \(xy'=y\left(y\ln x-1\right)\)
Cho y=sin^2x. Chứng minh y'''+4y=0
Cho \(y=x.e^{-\frac{x^2}{2}}\). Chứng minh hệ thức \(xy'=\left(1-x^2\right)y\)
cho y=\(\ln\frac{1}{1+x}\) chứng minh hệ thứ xy'+1=\(e^y\)
Cho hàm số \(y=x\sin x\)
a) Chứng minh rằng:
y’’’ + y’ +2sinx = 0
b) Tìm x khi y’’ + y =2
c) Tính y(5)(\(\frac{\pi}{2}\))
tính đạo hàm [(x+2y)^y]'