cho 4 số x,y,z thỏa mãn:\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+t+x}\dfrac{t}{y+x+z}\)
Hãy tính giá trị của biểu thức:\(A=\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
Cho biểu thức: \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{\:t+x}{y+z}\) . Tìm giá trị của P biết rằng: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\) .
\(\dfrac{x}{y+z+t}\)=\(\dfrac{y}{z+t+x}\)=\(\dfrac{z}{t+x+y}\)=\(\dfrac{t}{x+y+z}\)
Cho \(\dfrac{x}{y+z+t}\)= \(\dfrac{y}{z+t+x}\)= \(\dfrac{z}{t+x+y}\)= \(\dfrac{t}{x+y+z}\)( giả thuyết các tỉ số đều có nghĩa )
Cho 3 số x,y,z thỏa mãn điều kiện
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{5x+7y-7}{4x}\)
Hãy tính giá trị biểu thức : B=\(\left(1+\dfrac{x}{y}\right)\cdot\left(1+\dfrac{y}{z}\right)\cdot\left(1+\dfrac{z}{x}\right)\)
Tìm x, y, z
\(\dfrac{x+y+2017}{z}=\dfrac{y+z-2018}{x}=\dfrac{z+x+1}{y}=\dfrac{2}{x+y+z}\)
Tìm x; y; z
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Tìm x, y, z biết:
\(\dfrac{x+y-3}{z}=\dfrac{x+z+2}{y}=\dfrac{y+z+1}{x}=\dfrac{1}{x+y+z}\)
Tìm x, y, z biết rằng \(\dfrac{x}{y+z+2016}=\dfrac{y}{x+z+2017}=\dfrac{z}{x+y-4033}=x+y+z\)