Theo dãy tỉ số = nhau ta có :
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3x+3y+3z+3t}=\dfrac{1}{3}\)
\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Leftrightarrow3x=y+z+t\) (1)
\(\dfrac{y}{z+t+x}=\dfrac{1}{3}\Leftrightarrow3y=z+t+x\) (2)
\(\dfrac{z}{t+x+y}=\dfrac{1}{3}\Leftrightarrow3z=t+x+y\) (3)
\(\dfrac{t}{x+y+z}=\dfrac{1}{3}\Leftrightarrow3t=x+y+z\) (4)
Từ (1) và (2) => 3x + 3y = x + y + 2(z+t) => 2(x+y) = 2(z+t) => x + y = z + t (5)
Từ (2) và (3) => 3y + 3z = y + z + 2(t + x) => 2(y+z) = 2(t+x) = > y + z = t + x
Vậy P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}=4\)