cho x,y,z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\) tìm max của \(Q=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\left(x,y,z\ne0\right)\). Tính \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Cho xyz=1.Tính tổng:M=\(\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)
Chứng minh rằng nếu \(\dfrac{x^2-yz}{x\left(1-yz\right)}=\dfrac{y^2-xz}{y\left(1-xz\right)}\). Với \(x\ne y;xyz\ne0;yz\ne1;xz\ne1\). Thì: \(xy+xz+yz=xyz\left(x+y+z\right)\)
cho 3 số dương x,y,z thỏa mãn x2+y2+z2 \(\le\) 3. Tìm min của P = \(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
cho x,y,z là số nguyên dương và x+y+z=1 tìm max của
\(P=\dfrac{xy}{z+1}+\dfrac{yz}{x+1}+\dfrac{xz}{y+1}\)
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị của biểu thức : \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho x,y,z > 0 và x + y + z < hoặc bằng 3 . Chứng minh \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{2009}{xy+yz+zx}\) > hoặc bằng 670
CMR:các biểu thức sau không phụ thuộc vào x,y,z:
\(P=\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\) Q=\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(x-z\right)\left(y-z\right)}+\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)