\(BDT\Leftrightarrow\sqrt[3]{\dfrac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\dfrac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le1\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt[3]{\dfrac{abc}{(a+x)(b+y)(c+z)}}\le\dfrac{\dfrac{a}{a+x}+\dfrac{b}{b+y}+\dfrac{c}{c+z}}{3}\)
\(\sqrt[3]{\dfrac{xyz}{(a+x)(b+y)(c+z)}}\le\dfrac{\dfrac{x}{a+x}+\dfrac{y}{b+y}+\dfrac{z}{c+z}}{3}\)
Cộng theo vế 2 BĐT trên:
\(\Rightarrow VT\le\dfrac{\dfrac{x+a}{x+a}+\dfrac{b+y}{b+y}+\dfrac{c+z}{c+z}}{3}=1=VP\) *ĐPCM*