Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Tiền Châu

cho x,y,z>0 và \(x^2+y^2+z^2=3\). Chứng minh rằng

\(A=\sqrt{\dfrac{x^2}{x^2+y+z}}+\sqrt{\dfrac{y^2}{y^2+x+z}}+\sqrt{\dfrac{z^2}{z^2+x+y}}\le\sqrt{3}\)

Akai Haruma
1 tháng 10 2017 lúc 18:14

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\((x^2+y+z)(1+y+z)\geq (x+y+z)^2\Rightarrow x^2+y+z\geq \frac{(x+y+z)^2}{1+y+z}\)

\(\Rightarrow \sqrt{\frac{x^2}{x^2+y+z}}\leq \sqrt{\frac{x^2(1+y+z)}{(x+y+z)^2}}=\frac{x\sqrt{1+y+z}}{x+y+z}\)

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow A\leq \frac{x\sqrt{1+y+z}+y\sqrt{1+x+z}+z\sqrt{x+y+1}}{x+y+z}\)

Áp dụng BĐT Cauchy-Schwarz:

\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)(xy+xz+x+yx+yz+y+zx+zy+z)\)

\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)[2(xy+yz+xz)+x+y+z]\) (1)

Theo BĐT AM-GM:
\((x+y+z)^2\geq 3(xy+yz+xz)=(x^2+y^2+z^2)(xy+yz+xz)\geq (xy+yz+xz)^2\)

\(\Rightarrow x+y+z\geq xy+yz+xz\) (2)

Từ \((1),(2)\Rightarrow (x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z).3(x+y+z)=3(x+y+z)^2\)

\(\Leftrightarrow x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1}\leq \sqrt{3}(x+y+z)\)

\(\Rightarrow A\leq \frac{\sqrt{3}(x+y+z)}{x+y+z}=\sqrt{3}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)


Các câu hỏi tương tự
Trúc Giang
Xem chi tiết
Neet
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
phạm kim liên
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Fidget Spinner
Xem chi tiết
Xem chi tiết
Nguyệt Trần
Xem chi tiết