Vì \(x-y-z=0\Rightarrow\left[{}\begin{matrix}x-z=y\\y-x=-z\\z+y=x\end{matrix}\right.\) (1)
Thay (1) vào B ta đc:
\(B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(=\left(\dfrac{x-z}{x}\right)\left(\dfrac{y-x}{y}\right)\left(\dfrac{z+y}{z}\right)\)
\(=\dfrac{y}{x}.\dfrac{-z}{y}.\dfrac{x}{z}\)
\(=-1\)
Vậy \(B=-1.\)