\(\dfrac{S}{2\sqrt{3}}=\dfrac{x}{2\sqrt{3x\left(2y+2z-x\right)}}+\dfrac{y}{2\sqrt{3y\left(2x+2z-y\right)}}+\dfrac{z}{2\sqrt{3z\left(2x+2y-z\right)}}\)
\(\dfrac{S}{2\sqrt{3}}\ge\dfrac{x}{3x+2y+2z-x}+\dfrac{y}{3x+2x+2z-y}+\dfrac{z}{3z+2x+2y-z}=\dfrac{1}{2}\)
\(\Rightarrow S\ge\sqrt{3}\)
\(S_{min}=\sqrt{3}\) khi \(x=y=z\)