$$P=\sum\limits_{cyc} \frac{yz}{x^3(z+2y)} =\sum\limits_{cyc} \,{\frac {3{y}^{2}{z}^{2}}{{x}^{2} \left( z+2\,y \right) \left( x+y+z
\right) }}$$
Cho $x=y=z$ thì thấy $\text{P}=1.$ Ta chứng minh 1 là giá trị nhỏ nhất của P tức là chứng minh $$\text{P}=\sum\limits_{cyc} \,{\frac {3{y}^{2}{z}^{2}}{{x}^{2} \left( z+2\,y \right) \left( x+y+z
\right) }} \geqq 1$$
Thật vậy sau khi quy đồng ta cần chứng minh$:$
$$\frac{1}{2} \sum\limits_{cyc} \,x{z}^{3} \left( 7\,{x}^{2}yz+12\,{x}^{2}{z}^{2}+23\,x{y}^{3}+7\,x
{y}^{2}z+30\,xy{z}^{2}+17\,{y}^{2}{z}^{2} \right) \left( x-y \right)
^{2} \geqq 0$$
Xong.