\(P=\dfrac{\left(x+y\right)\left(y+z\right)}{z+x}+\dfrac{\left(y+z\right)\left(z+x\right)}{x+y}+\dfrac{\left(z+x\right)\left(x+y\right)}{y+z}\)
Áp dụng BĐT Cauchy ta có:
\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\z+y\ge2\sqrt{yz}\\x+z\ge2\sqrt{xz}\end{matrix}\right.\)
\(\Rightarrow\dfrac{\left(x+y\right)\left(y+z\right)}{z+x}\ge\dfrac{2\sqrt{xy}.2\sqrt{yz}}{2\sqrt{xz}}\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+z\right)}{z+x}\ge2y\) (1)
Chứng minh tương tự ta có:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left(y+z\right)\left(z+x\right)}{x+y}\ge2z\left(2\right)\\\dfrac{\left(y+x\right)\left(z+x\right)}{z+y}\ge2x\left(3\right)\end{matrix}\right.\)
Từ (1),(2),(3)
\(\Rightarrow P\ge2x+2y+2z\)
\(\Rightarrow P\ge2.3\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi
\(x=y=z\)
Vậy Min P là 6 khi \(x=y=z\)
Otasaka Yu: Cosi nhưng đừng là ở dưới đó.... (it's same some mô típ i've read and seen Manga and Anime Japan ( ͡° ͜ʖ ͡°))
\(\dfrac{\left(x+y\right)\left(y+z\right)}{x+z}+\dfrac{\left(y+z\right)\left(x+z\right)}{x+y}\ge2\sqrt{\left(y+z\right)^2}=2\left(y+z\right)\)
Tương tự rồi cộng theo vế:
\(2P\ge2\left(x+y+z\right)\Leftrightarrow P\ge x+y+z=3\)
\("=" <=> x=y=z=1\)
It's A jOke. DoN't TriGgeRed my dude !
anh Tú ơi cái này là em hỏi mẹ em để giải giúp anh đấy
Áp dụng bất đẳng thức Cosi ta có:
\(\dfrac{\left(x+y\right)\left(y+z\right)}{z+x}+\dfrac{\left(z+x\right)\left(x+y\right)}{y+z}\ge2\left(x+y\right)\)
\(\dfrac{\left(y+z\right)\left(z+x\right)}{x+y}+\dfrac{\left(z+x\right)\left(x+y\right)}{y+z}\ge2\left(z+x\right)\)
\(\Rightarrow2P\ge4\left(x+y+z\right)=4\times3=12\)
\(\Rightarrow P\ge6\)
Vậy P đạt giá trị nhỏ nhất bằng 6 , xảy ra khi và chỉ khi
\(x=z=y=1\)
bạn cứ áp dụng tính chất dãy tỉ sô bằng nhau đi