Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right)\) . Tìm giá trị nhỏ nhất của biểu thức
P = 6x + 2y + 12z
Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right)\). GTNN của biểu thức P=3x+y+6z
Cho ba số x,y,z không âm thỏa mãn x+y+z=3. Chứng minh rằng:
\(\left(x^3+y^3+z^3\right)\left(x^3y^3+y^3z^3+z^3x^3\right)\le36\left(xy+yz+xz\right)\)
Xét các số thực dương x,y,z thõa mãn điều kiện xyz=1 Tìm GTLN của biểu thức :
\(P=\frac{1}{x^3\left(y^3+z^3\right)+1}+\frac{1}{y^3\left(z^3+x^3\right)+1}+\frac{1}{z^3\left(x^3+y^3\right)+1}\)
1. Cho các số thực x, y, z thỏa mãn điều kiện \(\left\{{}\begin{matrix}x-y+z=3\\x^2+y^2+z^2=5\end{matrix}\right.\)
\(P=\dfrac{x+y-2}{z+2}\) đạt giá trị lớn nhất là bao nhiêu?
2. Cho \(f\left(x\right)=2021x^2+\dfrac{6y^2}{2021}-4xy-\dfrac{y}{2021}+x+\dfrac{m^2}{2021}\)
Tìm m để \(f\left(x\right)>0\forall x,y\)
3. Cho hệ bất phương trình \(\left\{{}\begin{matrix}\left|x+1\right|\le1\\\dfrac{x}{m}< 1\end{matrix}\right.\) (m ≠ 0 là tham số thực)
Tìm tất cả các giá trị của tham số m để hệ bpt có đúng 3 nghiệm nguyên
Cho các số thực dương x,y thỏa mãn x+y \(\le\)6. Tìm giá trị nhỏ nhất của biểu thức:
\(P=x^2\left(6-x\right)+y^2\left(6-y\right)+\left(x+y\right)\left(\frac{1}{xy}-xy\right)\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Các bạn giúp mình với
Câu 1: Cho a, b, c >0 và \(a\le b+c\) Tìm giá trị nhỏ nhất của
\(p=\frac{c}{\left(a+b\right)}+\left(b+c\right)\left(\frac{1}{b+2c}+\frac{1}{a+c}\right)\)
Câu 2: Cho x, y, z >0 Tìm giá trị nhỏ nhất
\(p=\frac{1}{3}\left(\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}\right)\left[\frac{xyz\left(x+y+z\right)}{x^2y^2+y^2z^2+z^2x^2}\right]^2\)
Câu 3: Cho \(x,y,z\in R\) và \(x^2+y^2+z^2=1\) Tìm giá trị lớn nhất của
\(P=\frac{x^2y^2}{1-xy}+\frac{z^2y^2}{1-zy}+\frac{x^2z^2}{1-xz}\)