Cho x,y,z là các số thực dương lớn hơn 3. Tìm gtnn của biểu thức P= 2x/ căn ( y+z-6) + y/ căn ( z+ 2x -6) + z/ căn ( 2x+y-6)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm giá trị lớn nhất của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
bài 1:Giải các phương trình và hệ phương trình sau:
a)căn(x+2)(x-y+3)=căn(y),x^2+(x+3)(2x-y+5)=x+16
b)căn(3x^2-6x-6)=3 căn(2-x)^5)+(7x-19)căn(2-x)
c)x^2-x-4=2 căn(x-1)(1-x)
d)x^3+xy^2-10y=0,x62=6y^2=10
e)x văn(2x-3)=3x-4
f)x+y+1/y=9/x, x+y-4/x=4y/x^2
Bài 2:Xét các số thực dương a,b,c thỏa mãn: abc=1. Tìm giá trị lớn nhất của biểu thức:
T=a/(b^4+c^4+a)+b/(a^4+c^4+b)+c/(a^4+b^4+c)
bài 3:Cho a,b là các số thực thỏa mãn các điều kiện sau đây:15b^2+20b+6=0,ab khác 1.15b^2+20b+6=0;ab khác 1.CMR:b^2/(ab^2-9(ab+1)^3)=6/2015
Bài 4: Tìm giá trị nhỏ nhất của hàm số:f(x)=|x-1|+2|x-2|+3|x-3|+4|x-4|
Bài 5: Cho 3 số thực dương x,y,z thỏa mãn:1/x^2+1/y^2+1/z^2=1. Tìm giá trị nhỏ nhất của biểu thức:
P=y^2z^2/x(y^2+z^2)+z^2x^2/y(z^2+x^2)+x^2y^2/z(x^2+y^2)
Bài 6:Tìm nghiệm nguyên của phương trình:x^2-2y(x-y)=2(x+1)
Bài 7:Cho ba số thực x,y,z thỏa mãn điều kiện:x+y+z=0, và xyz khác 0. Tính giá trị biểu thức:x^2/(y^2+z^2-x^2)+y^2/(z^2+x^2-y^2)+z^2/(x^2+y^2-z^2)
bài 8:Tìm các cặp số nguyên (x,y) thỏa mãn:2015(x^2+y^2)-2014(2xy+1)=25
@Akai Haruma
@học tốt toán lý hóa
@Toán ơi ta yêu toán lắm!
@Toán 9
@Người Đã từng là quán quân Toán quốc gia
@Yêu Toán
@Quản Trị Toán
cho 3 số thực dương x,y,z thỏa mãn x+y+z=2 . Tìm giá trị nhỏ nhất của biểu thức A=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
cho x,y,z là 3 số thực dương thỏa mãn x+y+z=3. tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)
cho x,y,z là các số dương thỏa x+y+z>=12.tìm minP= x/căn y+y/căn z+z/căn z
Cho x,y,z là ba số thực dương thỏa mãn x+y+z=2
Tìm giá trị nhỏ nhất của biểu thức
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)