Cho 3 số dương x, y, z thỏa mãn \(x+y+z=\frac{3}{4}\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{1}{\sqrt[3]{x+3y}}+\frac{1}{\sqrt[3]{y+3z}}+\frac{1}{\sqrt[3]{z+3x}}\)
Cho các số thực dương x,y thuộc (0;1). Tìm giá trị lớn nhất của biểu thức: \(P=\sqrt{x}+\sqrt{y}+\sqrt[4]{12}\sqrt{x.\sqrt{1-y^2}+y\sqrt{1-x^2}}\)
Cho các số thực x,y,z \(\ne-1\) thỏa mãn x + y + z = 3 . Chứng minh \(\dfrac{x+1}{y+1}+\dfrac{y+1}{z+1}+\dfrac{z+1}{x+1}\le\dfrac{25}{3\sqrt[3]{4xy+4yz+4xz}}\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho hai số thực x,y thỏa mãn \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). GTLN của biểu thức P=x+y
Cho ba số thực dương x,y,z thỏa mãn điều kiện x + y +z = 3. Tìm giá trị lớn nhất \(P=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+c}.\)
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)