Cho x,y,z là 3 số nguyên dương , nguyên tố cùng nhau và \(\left(x-z\right)\left(y-z\right)=z^2\) . Đặt a = xyz . Chứng minh rằng a là số chính phương
1. Tìm các số nguyên tố x,y sao cho: 51x + 26y = 2000
2. Tìm số tự nhiên x, y biết: 7(x - 2004)^2 = 23 - y^2
3. Tìm x,y nguyên biết: 2xy - x -y=2
4. tìm x, biết |x+1,1| +|x+1,2|+|x+1,3|+|x+1,4|=5x
5, Tìm các số x,y,z biết: x/2=y/3=z/4 và x^2 + y^2 + z^2 = 116
6. Tìm các số x,y,z biết: 2x-3y/2=4y-2z/3=3z-4x/4 và 3x+2y+z=17
Cho a,b,c,x,y,z là các số nguyên dương và 3 số a,b,c khác 1 thỏa mãn: \(a^x=bc;b^y=ca;c^z=ab\)
CMR:
x+y+z+2=xyz.
Cho ba số x, y, z đôi một phân biệt thỏa mãn \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}\)
Vậy \(\left(x-z\right)^3:\left[\left(x-y\right)^2\left(y-z\right)\right]=.......\)
Cho 3 số a, b, c khác 0 và : a(y + z) = b(x + z) =c(z + y) Chứng minh rằng : y - z /a(b - c) = z - x / b(c - a) = x - y / c(a - b)
Tìm ba số x,y,z biết rằng \(2x=\dfrac{y}{3}=\dfrac{z}{5}\)và \(x+y-\dfrac{z}{2}=-20\)
x, y tỉ lệ nghịch theo hệ số tỉ lệ là -3; y,z tỉ lệ nghịch theo hstl 2. Vậy z và y tỉ lệ thuận theo hstl nào? (hstl là hệ số tỉ lệ)
Cho 3 số x, y, z đôi một phân biệt thỏa mãn \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}\) Vậy \(\left(x-z\right)^2:[\left(x-y\right)^2\left(y-z\right)]=\)
Giúp mk với
Cho các số nguyên dương x, y, z thỏa mãn \(x^2+y^2=z^2\). Chứng minh rằng:
\(x+3z-y\) là hợp số.