(x + y)(y + z)(x + z) = 8xyz
⇒ (xy + xz + y2 + yz)(x + z) - 8xyz = 0
⇒ x2y + xyz + x2z + xz2 + y2x + y2z + xyz + yz2 - 8xyz = 0
⇒ x2y - 2xyz + yz2 + xy2 - 2xyz + xz2 + x2z - 2xyz + y2z = 0
⇒ y(x - z)2 + x(y - z)2 + z(x - y)2 = 0
mà x, y, z > 0 (gt)
⇒ \(\left\{{}\begin{matrix}\left(x-z\right)^2=0\\\left(y-z\right)^2=0\\\left(x-y\right)^2=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-z=0\\y-z=0\\x-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=z\\y=z\\x=y\end{matrix}\right.\)
⇒ x = y = z