Ta có \(P=xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=3\).
Đẳng thức xảy ra khi x = y = z = 1.
Ta có \(P=xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=3\).
Đẳng thức xảy ra khi x = y = z = 1.
11. xyz - xy - yz - zx + x + y + z - 1
12. xy(x + y) + yz(y + z) + zx(z + x) + 2xyz
13. xy(x + y) + yz(y + z) + zx(z + x) + 3xyz
giúp mik vs mik đang cần gấp =(((
cho 3 số xyz thỏa mãn x+y+z=3 tính B=xy+yz+zx
tìm x,y,z x^2 + y^2 + z^2 = xy +yz +zx và x^2009+y^2009 +z^2009=3^2010
Phân tích các đa thức sau thành nhân tử
a,2x2+3xy-14y2
b,(x-7)(x-5)(x-3)(x-1)+7
c,(x-3)2+(x-3)(3x-1)-2(3x-1)2
d,xy(x-y)+yz(y-z)+zx(z-x)
f,x(y+z)2+y(z+x)2+z(x+y)2-4xyz
Tính GT biểu thức
C=xyz-(xy+yz+zx)+x+y+z-1 với x=9; y=10; z=11
D=x3-x2y-xy2+y3 với x=5,75; y=4,25
Tính GT biểu thức
C=xyz-(xy+yz+zx)+x+y+z-1 với x=9; y=10; z=11
D=x3-x2y-xy2+y3 với x=5,75; y=4,25
A=xyz +(x+y+z)-1-(xy+yz+zx)
phân tích
(a+b)^3-c^3
x^4+x^3-x^2+x-2
(x^2+8x+7)*(x^2+8x+15)+15
x^7+x^2+1
xy(x+y)+yz(y+z)+zx(z+x)+yxz
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)