Ta có: xy=a ; yz=b ; zx=c
=> \(x^2.y^2.z^2=abc\)
\(x^2.y^2=a^2\)
\(y^2.z^2=b^2\)
\(z^2.x^2=c^2\)
Vậy: \(x^2.b^2=abc\)
\(a^2.z^2=abc\)
\(y^2.c^2=abc\)
\(x^2=\frac{ac}{b};y^2=\frac{ab}{c};z^2=\frac{bc}{a}\)
Vậy: \(x^2+y^2+z^2=\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}=\frac{a^2.b^2+b^2.c^2}{abc}\)