Cho các số x;y thỏa mãn : \(5x^2+5y^2+8xy-2x+2y+2=0\)
Tính giá trị biểu thức:\(M=\left(x+y\right)^{2019}+\left(x-2\right)^{2020}+\left(y+1\right)^{2021}\)
Cho các số x, y thỏa mãn đẳng thức: \(5x^2+5y^2+8xy+2x-2y+2=0\)
Tính giá trị của biểu thức:
M = \(\left(x+y\right)^{2019}+\left(x+2\right)^{2020}+\left(y-1\right)^{2021}\)
Rút gọn: \(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right).\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{x\sqrt{x}+y\sqrt{y}}\)
Cho các số không âm x,y,z thỏa mãn x+y+z=3.
Tìm giá trị lớn nhất của A = \(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
cho x,y,z dương thỏa mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\). tìm GTNN và GTLN của \(P=\dfrac{2x+z}{x+2z}\)
Cho x, y, z thỏa mãn : \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Cmr :
\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{zx\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\ge\dfrac{3}{2}\).
Cho 2 số thực x, y thỏa mãn \(-4\le x\le4và0\le y\le16\)
CMR: \(x.\sqrt{16-y}+\sqrt{y.\left(16-x^2\right)}\le16\)
Tìm cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Tìm các cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)