Theo đề bài ta có :
\(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)
\(\Leftrightarrow x^3-y^3=\sqrt{y+2}-\sqrt{x+2}\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)=\dfrac{y+2-x-2}{\sqrt{x+2}+\sqrt{y+2}}\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\dfrac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+\dfrac{1}{\sqrt{x+2}+\sqrt{y+2}}\right)=0\)
Dễ thấy: \(x^2+xy+y^2+\dfrac{1}{\sqrt{x+2}+\sqrt{y+2}}>0\)
=> \(x=y\)
Thay vào A, ta được :
\(A=x^2+2x^2-2x^2+2x+10=x^2+2x+10=\left(x+1\right)^2+9\ge9\)
Vậy GTNN là 9 khi \(x=y=-1\).