Cho các số thực x, y, z thỏa mãn \(x^2+y^2+z^2=5\) và x - y + z = 3 . Giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+y-2}{z+2}\) bằng
A. \(\dfrac{1}{2}\) B. \(0\) C. \(\dfrac{-36}{23}\) D. \(\dfrac{-13}{4}\)
Mn giúp e với ạ🌸
Xét x,y là các số thực dương thỏa mãn: x+y=1. Tìm GTNN của biểu thức: P= (x+1/x)^2 + (y+1/y)^2
Cho hai số thực dương x;y thỏa mãn \(x^2+y^2=1\) .Tìm giá trị lớn nhất của biểu thức: \(K=x\sqrt{3}+y\)
Cho x,y là hai số thực thỏa mãn x > y
và xy = 1000. Biết biểu thức \(F=\frac{x^2+y^2}{x-y}\)
đạt giá trị nhỏ nhất khi \(\hept{\begin{cases}x=a\\y=b\end{cases}}\)
Tinh \(P=\frac{a^2+b^2}{1000}\)
Giải hộ ạk
Cho 2 số thực x,y dương. Tìm GTNN của biểu thức
P=((x+y)^3)/xy^2
Cho 2 số thực x , y không âm và thỏa mãn
\(x^2+2y=12\)
Tìm giá trị lớn nhất của biểu thức
P = xy
Bài 1: Cho a,b dương sao cho a+b=1. Chứng minh rằng: \(\frac{a^2}{a+2b}+\frac{b^2}{a+2b}\ge\frac{1}{3}\)
bài 2: Cho x,y là các số thực dương thỏa mãn x+y=2019. tìm giá trị nhỏ nhất của biểu thức P= \(\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}\)
bài 3: Cho x>0, y>0 là những số thay đổi thỏa mãn \(\frac{2018}{x}+\frac{2019}{y}=1\). tìm giá trị nhỏ nhất của biểu thức P= x+y
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a. \(y=f\left(x\right)=\dfrac{3x+1}{x^2+2\left(m-1\right)x+m^2+3m+5}\)
b. \(y=f\left(x\right)=\sqrt{x^2+2\left(m-1\right)x+m^2+m-6}\)
c. \(y=f\left(x\right)=\dfrac{3x+5}{\sqrt{x^2-2\left(m+3\right)x+m+9}}\)
Câu 1: Tập xác định của hàm số y=3x2+2x+2 là
A.∅ B.R C.R\{2} D.[3;+∞)
Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)
A.2 B.3 C.4 D.5
Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:
A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\) B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\) C.x=\(-\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)
D. Hệ vô nghiệm
Câu 4: Cho hệ:\(\left\{{}\begin{matrix}\dfrac{3}{x-1}+\dfrac{4}{y-2}=1\\\dfrac{1}{x-1}-\dfrac{2}{y-2}=2\end{matrix}\right.\) nếu đặt a=\(\dfrac{1}{x-1}\);b=\(\dfrac{1}{y-2}\)(x≠1;y≠2) hệ trở thành
A.\(\left\{{}\begin{matrix}3a+4b=1\\a-2b=2\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}3a-4b=1\\a-2b=2\end{matrix}\right.\) C.\(\left\{{}\begin{matrix}3a+4b=1\\a+2b=2\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}3a-4b=1\\a+2b=2\end{matrix}\right.\)
Câu 5: Hệ phương trình sau có bao nhiêu nghiệm (x;y): \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{4}{x}+\dfrac{6}{y}=6\end{matrix}\right.\)
A.0 B.1 C.2 D.Vô nghiệm
Câu 6: Tìm nghiệm (x;y) của hệ :\(\left\{{}\begin{matrix}x-y=1\\2x+y-z=2\\y+z=3\end{matrix}\right.\)
A.(\(\dfrac{7}{4};\dfrac{3}{4};\dfrac{9}{4}\)) B.(\(-\dfrac{7}{4};\dfrac{3}{4};-\dfrac{9}{4}\)) C.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\)) D.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))
Câu 7: Hệ phương trình:\(\left\{{}\begin{matrix}x+y=2\\x+2z=3\\y+z=2\end{matrix}\right.\) có nghiệm là?
A.(1;1;1) B.(2;2;1) C.(-1;1;2) D.(1;2;1)
Câu 8: Cho tam giác ABC có a2+b2>c2 khi đó
A.Góc C>90o B. Góc C<90o C. Góc C=90o D. Không thể kết luận được gì về góc
C
Câu 9 : Tập nghiệm bất phương trinh x2<0
A.R B.∅ C.(-1;0) D.(-1;+∞)
Câu 10: Tập nghiệm của bất phương trình (x+1)2≥0
A.R B.∅ C.(-1;0) D.(-1;+∞)