theo cô- si ta có:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}};x+y\ge2\sqrt{xy}\Rightarrow\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\Rightarrow dpcm\)
*) \(x+y\ge2\sqrt{xy}\) (1)
*) \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}\) (2)
Nhân (1), (2) với nhau, ta có:
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(đpcm)
Dành cho những bạn cần !!!
Biến đổi tương đương là OKi
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)