\(P=\frac{4}{5}\left(x+y\right)+\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}\)
\(P\ge\frac{4}{5}.10+2\sqrt{\frac{6x}{5}.\frac{30}{x}}+2\sqrt{\frac{y}{5}.\frac{5}{y}}=22\)
\(\Rightarrow P_{min}=22\) khi \(x=y=5\)
\(P=\frac{4}{5}\left(x+y\right)+\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}\)
\(P\ge\frac{4}{5}.10+2\sqrt{\frac{6x}{5}.\frac{30}{x}}+2\sqrt{\frac{y}{5}.\frac{5}{y}}=22\)
\(\Rightarrow P_{min}=22\) khi \(x=y=5\)
Cho x,y,z là các số dương thỏa mãn: \(x+y\ge10\). Tìm GTNN của \(A=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
Cho hai số thực dương x,y thỏa mãn: x+y\(\ge10\)
Tìm giá trị nhỏ nhất của biểu thức sau:
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
a, Tìm GTNN của biểu thức:
A=x2+2y2+2xy+2x-4y+2017
b, Cho x,y>0 Cmr \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+3\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Cho x,y≥0 thỏa mãn x+y=1.Tìm GTNN của biểu thứcQ=\(\frac{x}{y+1}+\frac{y}{x+1}\)
Cho x, y > 0 thỏa mãn x + y = 4. Tìm GTNN của biểu thức \(A=xy+\frac{20}{xy}\)
Cho x,y dương thỏa mãn x+y = 3. Tìm GTNN của biểu thức:
\(P=\frac{5}{x^2+y^2}+\frac{3}{xy}\)
Cho ba số x,y,z ≠0 thỏa mãn điều kiện:
x+y+z=0, \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2003}\)
Tính giá trị của biểu thức A=\(\left(x^3+y^3\right)\left(x^5+y^5\right)\left(x^7+y^7\right)\)
1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.