Lời giải:
a) \(x^4+y^4=(x^2+y^2)^2-2x^2y^2\)
\(=(x^2+y^2)^2-2[\frac{(x^2+y^2)-(x-y)^2}{2}]^2\)
\(=17^2-2(\frac{17-25}{2})^2=257\)
b) \(x^5-y^5=(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)\)
\(=(x-y)[(x^2+y^2)^2-x^2y^2+x^3y+xy^3]\)
\(=(x-y)[(x^2+y^2)^2-x^2y^2+xy(x^2+y^2)]\)
\(=5(17^2-x^2y^2+17xy)\)
Mà \(xy=\frac{(x^2+y^2)-(x-y)^2}{2}=\frac{17-25}{2}=-4\)
Do đó: \(x^5-y^5=5(17^2-16-17.4)=1025\)
c)
\(x^7-y^7=(x^5-y^5)(x^2+y^2)-x^5y^2+x^2y^5\)
\(=1025.17-x^2y^2(x^3-y^3)\)
\(=1025.17-x^2y^2(x-y)(x^2+xy+y^2)\)
\(=1025.17-(x^2y^2)(x-y)(x^2+y^2+xy)\)
\(=1025.17-(-4)^2.5(17-4)=16385\)
Cách khác là em có thể thay \(x=y+5\) vào phương trình đầu tiên. Giải pt một ẩn thu được \(y=-1\Rightarrow x=4\). Từ đó tính được cụ thể các giá trị cần tìm.
